If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x=780
We move all terms to the left:
x^2+4x-(780)=0
a = 1; b = 4; c = -780;
Δ = b2-4ac
Δ = 42-4·1·(-780)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-56}{2*1}=\frac{-60}{2} =-30 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+56}{2*1}=\frac{52}{2} =26 $
| 4.5z=4.5z–6.25+6.25 | | 100+25x=350+5x | | .789=21.56/x | | 7x^2-12x+11=5x^2–5 | | 169z2–1=0 | | 3/7x=-34/7 | | 3/7x=-42/7 | | 0=-4x^+x-1 | | x+30=35 | | 13x+0=144 | | 12x^2+15x-12=0 | | 3/4z=5 | | 9/10s=4 | | r/5/6=7 | | x-8=1/7 | | 1/5+x=10 | | 2n=4/9 | | 5/7s=3 | | 50x2+147x-588=0 | | g-3.7=2.9 | | -4x-25=6x | | 5/6t=2 | | 5x-10=6x-21 | | (2x-6)+(x+12)=60 | | (5x-10)+(4x+12)=360 | | 7+3a-4=6a-5a | | 3x^2+3x-90/x^2-7x+10=0 | | 0.25x+0.1(x-3)=0.05(22) | | x²+100x-120000=0 | | 2/9b+1/3b=4/9-1/3 | | 2/6=8/7n | | 1-x=0.95 |